Will Heinz
Scientist
Optical Microscopy and Analysis Laboratory
Background
Will Heinz received his Ph.D. from the department of Biophysics and Biophysical Chemistry at Johns Hopkins University School of Medicine. His research interests include biological atomic force microscopy and developing in vitro tools, microscopy techniques, and analytical methods to investigate the immunosuppressive tumor microenvironment. Before joining OMAL, he developed protein micropatterning techniques for cell-based applications, one of which he patented and commercialized.
Selected Publications
An in vitro tumorigenesis model based on live cell-generated oxygen and nutrient gradients. Gilmore, A. C., Flaherty, S. J., Somasundaram, V., Scheiblin, D. A., Lockett, S. J., Wink, D. A., & Heinz, W. F. (2020). BioRxiv, 2020.08.24.264580. https://doi.org/10.1101/2020.08.24.264580
Truncated Tetrahedral RNA Nanostructures Exhibit Enhanced Features for Delivery of RNAi Substrates. Zakrevsky, P., Kasprzak, W. K., Heinz, W. F., Wu, W., Khant, H., Bindewald, E., Dojsuren, N., Eric A, F., de Val, N., Jaeger, L., & Shapiro, B. A. (2020). Nanoscale, 12(4), 2555–2568. https://doi.org/10.1039/c9nr08197f
Inducible nitric oxide synthase-derived extracellular nitric oxide flux regulates proinflammatory responses at the single cell level. Somasundaram, V., Gilmore, A. C., Basudhar, D., Palmieri, E. M., Scheiblin, D. A., Heinz, W. F., Cheng, R. Y. S., Ridnour, L. A., Altan-Bonnet, G., Lockett, S. J., McVicar, D. W., & Wink, D. A. (2020). Redox Biology, 28, 101354. https://doi.org/10.1016/j.redox.2019.101354
Density of σ70 promoter-like sites in the intergenic regions dictates the redistribution of RNA polymerase during osmotic stress in Escherichia coli. Sun, Z., Cagliero, C., Izard, J., Chen, Y., Zhou, Y. N., Heinz, W. F., Schneider, T. D., & Jin, D. J. (2019). Nucleic Acids Research, 47(8), 3970–3985. https://doi.org/10.1093/nar/gkz159